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1.0 INTRODUCTION

This report presents the results of the second phase of the Antenna
Evaluation Study for the Shuttle Imaging Radar (SIR). The objectives of Phase
II were (1) to complete the specifications for the subarray test panels, (2)
to begin a study of the effects of electrical and mechanical tolerance varia-
tions on overall SIRA performance, (3) to initiate the development of a math-
ematical model which adequately describes the array performance and (4) to
begin the development of a comprehensive computer program which will even-
tually simulate the performance characteristics of the antenna in a space-
borne environment'. Items (2), (3), and (4) were begun in Phase I (ahead of
schedule), and because of thig, it has been possible to accelerate the Phage

II modeling/simulation objectives to the point where simulations of expected

mechanical/electrical errors have already been produced.

1
From PSL Technical Proposal, Phase II.

1l



2.0 ANTENNA TEST PANEL SPECIFICATIONS

The purpose of constructing subarray panels is two-fold:

l. To produce realistic simulation and measurement of reduced-size
array behavior and to extend this to a prediction of full-gsize
array behavior.

2. To verify the ability of near-field antenna pattern measurement
techniques to measure full-scale SIRA characteristics, particu-
larly in gain, beam coincidence, and cross-polarization levels

at X~-band.

The specifications on these test panels are based on an estimate of the tests
and measurements that will be required to obtain the above results. Further
constraints are imposed by measurement facility restrictions at PSL (for far-
fielc data) and NBS (for near-field data) and such paractical considerations
as size, weight, etc. The test panel specifications, predicated on a dual-
band, dual-polarized antenna, are given in Tables I and II. Details of each

specification and its justification are given below.

2.1 Electrical Specifications

At the time these specifications were made, it had been tentatively
decided to configure the SIRA as a dual frequency (C- and X-band) and dual
polarized antenra. Specifications, therefore, reflect this design and not the

later SIR-A/SIR-B philosophy.



TABLE I. Shuttle Imaging Radar Antenna Test Panel Electrical Specifications

1. Electrical structure dimensions shall be 1.83 m by 1.83 m + 10%.
2. The antenna shall be dual frequency: 4.75 and 9.6 GHz.

3. The antenna shall have both horizontal and vertical polarization capability
at each frequency.

4. There shall be two modules at each frequency (and/or polarization) to
replicate beam width switching. (Note 1)

S. The antenna gain using both modules shall be at least 32 dB at 4.75 GHz
and 33 dB at 9.6 GHz. Antenna gain shall be optimized within the bounds
of other specifications.

6. The total antenna loss (ratio of maximum gain to maximum directivity)
shall not exceed 1.5 dB.

7. The VSWR in any mode of operation shall not exceed 1.3:1.

8. For any mode of operation, the cross-polarized component shall be at
least -30 4B with respect to the maximum principal polarization compcnent
as measured over the entire beam.

9. The electrical beam maximum shall be within 0.3o of the mechanical bore-
sight axis, which shall be established with respect to vendor-specified
datum planes.

10. No side lobe shall exceed ~12 dB (cne-way) with respect to the electrical
beam maximum.

1l. The antenna shall operate at rated power expected for SIR-B. (Note 2)

12. Other pattern requirements -- (Note 3)

Notes:

1. Vendor shall supply necessary switches and TTL-compatibie logic drivers.
If the switch driver is an integral part of the antenna assembly, the
vendor will locate all necessary power and command connectors on the rear
panel of the antenna and provide mating connectors.

2. Full power is desirable, but if this becomes too expensive, reduced
power can be tolerated. However, some demonstration of power handling
capability, full-power losses, etc. should be made by the vendor before
final contracts are awarded.



TABLE I. (continued)

3.

Horizontal plane beam width is determined from the 1.83 m (6') horizon-
tal dimension. Vertical plane beam width will depend on the division of
vertical space between frequencies, polarizations, and modules. To
minimize vertical beam width, this division should be procportional to
wavelength. In any event, the maximum half-power beam width of any mode-
frequency-polarization combination should be held to less than 30° to
minimize ground scatter during far-field antenna range measurements.
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TABLE II. Shuttle Imaging Radar Antenna Test Panel Mechanical Specifications

10.

11.

Dimensions of the mechanical structure shall be less than 2.13 m by
2.13 m. (7' x7')

Total weight of the electrical/mechanical structure shall not exceed
90 kg. (198 1bs.)

Antenna should be mounted on a mechanical support, representative of
space qualified designs, but full rigidity necessary in a space environ-
ment is neither required nor expected.

Design should recognize that mechanical testing will induce up to two
cm convex and concave deflections over the length of the antenna.
Maximum rate of change in deflection shall be less than 2 cm/m.

Rear of antenna shall be a flat metal plate, securly fastered to the
electrical antenna so that when deflections are induced, the antenna
deflection will replicate the plate deflection.

Primary support shall be a bolt circle 0.152 m in diameter centered at
the center of mass of the electrical/mechanical structure.

An array of stress pads, spaced 0.305 m over the rear of the antenna,
shall be attached to the rear plate. These should be drilled and
tapped for 3/8" - 16 bolts to a depth of 1.27 cm (1/2%).

Electrical connectors shall be located on the rear panel at convenient
locations not to interfere with the bolt circle or array of stress pads.
Connector types shall be Type N for the lower frequency, UG-39 waveguide
interface for the higher frequency.

Environmental -- The structure shall return to nominal flatness after
broadside exposure to wind speeds of up to 85 knots.

Stability of Materials -- Electrical characteristics of materials used
in antenna elements and feed lines shall be stable over long periocds of
time with respect to mission duration and under space vacuum conditions.

Vendor shall propose techniques for folding mechanism for the panels and
shall demonstrate that the full-sized array will perform with electrical
characteristics scaled from that of the test panel. Vendor is not ex-
pected to deliver test panel with a folding mechanism but instead is
required to demonstrate proof of concept.



2.1.1 Electrical Structure

1. “Electrical structure dimensions shall be 1.83 m x 1.83 m (6' x 6°') +10%"
The electrical size of the test panel was made using the following criteria:
1) the area was electrically large enough to allow meaningful electrical and
thermal tasts which could, with a computer simulation model, be used to pre-
dict full-size array performance, and 2) the antenna effective aperture was
small enough to conveniently make pattern tests using both near-field and far-

field techniques.

Criterion (2) is most restrictive. The rule-of-thumb used by most antenna
engineers for pattern testing is that the separation between the source and
test antenna be greater than 2D2/A. where D is the test antenna maximum di-
mension. This criterion corresponds to a A/16 (22 1/2°) path length dif-
ference between the source antenna and the extreme of a test antenna. For
precise measurement of null depths and side lobe levels, several times this
distance may be necessary. Using four times the rule-of-thumb distance cor-
responds to an aperture size of 1.87 m (6.135') at X-band when being tested on
the 3000' PSL range. This criterion (éDz/l) should provide sufficient accuracy
for all necessary measurements. Therefore, six feet is chosen as an upper-

bound on the array dimensions.

Heavy ground scatter alomg the 3000' range can be avoided by using a 4' -
6' parabolic dish as the transmitting antenna. With a transmitting antenna
diameter of this size, the far-field criterion becomes 2(Dr+D_)2/A where Dr is
the receive antenna diameter and Dt is the transmit antenna diameter. With Dr

= Dt = 6', the 3000' range still places the receive antenna in the far field.



2.1.2 FPrequency of Operation

2. "The antenna shall be dual frequency at 4.75 and 9.60 GHz."
At the time the test panel specifications were made, the full-size SIRA

was to operate at both C- and X-band.
2.1.3 Polarization

3. "The antenna shall have both horizontal and vertical polarization capabi-
lity at each frequency.®

At the time these test panel specifications were made, the full-size SIRA

was projected to operate in HH, HV, VV, VH modes.
2.1.4 Beam Width Switching

4. "There shall be two modules at each frequency {(and/or polarization) to
replicate beam width switching to be employed on the full-size SIRA."

This specification was to simulate SIRA elevation beam switching, with
the first module having twice the elevation width of the second. Originally,
the SIRA was to operate with a 100 km swath width over off-nadir angles of
between 7° and 50°, and three selectable beam widths were ne;essary to main-
tain a constant swath width for various incidence angles. As of this writing,
the multiple beam width question has not yet been decided. Therefore, it is

recommended that the test panels incorporate this feature.



2.1.5 Antenna Gain

S. "“The antenna gain using both modules shall be at least 32 4B at 4.75 GHz
and 33 dB at 9.6 GHz. Antenna gain shall be optimized within the bounds of
other specifications.”

If the C-band H and V elements can share the same physical aperture,
then, assuming an aperture efficiency of 55%, a gain of 34.6 dB is theoretically
possible. Assuming 2.6 dB for reedline and connector losses gives the speci-
fied gain of 32 dB. At X-band a theoretical gain of 37.7 @B is possible. The
33 dB figure specified allows for 4.7 4B in losses. Both Hughes and JPL/Ball
Bros. have estimated losses on the order of 2.6 dB at C-band and 3.7 dB at X~
band. Hence, the numbers specified are conservative. However, it is more

important (at least for the test panels) to meet all specifications than to

require an unobtainable antenna gain.
2.1.6 Antenna Insertion Loss

6.  "The total antenna loss (ratio of maximum gain to maximum directivity)
shall not exceed 1.5 dB."

The noise power generated by the loss in the antenna degrades the system

noise temperature by
T

a 1
Tsys = L + To 1 L) + To (Pr - 1)

1
*(F, =D T, (2-1)

where Tsys = System noise temperature

'ra = Antenna integrated incident brightness temperature
(T_=0)
a

Antenna loss (power ratio)

| o
L}

Noise figure of receiver (power ratio)

Receiver noise temperature = To(Pr-l)

290K (standard; assumed the same for antenna structure
and receiver box)

o'-]
[ ]
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Preliminary estimates by Hughes and JPL have indicated that a receiver with

a noise figure of 2.5 dB (Fr = 1.778) will be required to obtain a satisfactory
sign:l-to-noise ratio (SNR). PFrom equation (2-1), a 1.5 dB insertion loss

(L = 1.4125) degrades the system noise temperature to 438 K, versus 226 K for
the lossless case. The signal-to-noise ratio under these circumstances will

be degraded by

SNR degradation = 10 log(Tsys/Tr)

= 2.9 @B

{Conversely, to maintain a system noise figure of 2.5 3B with an antenna
insertion loss of 1.5 @B requiraes that the receiver noise figure be better

than 1.0 4B.)

while exact figures are not available, certainly no more than a 2.9 dB
SNR degradation would be acceptable, thus leading to the 1.5 dB antenna loss

constraint.
2.1.7 Antenna VSWR
7. “The V. .R in any mode of operation shall not exceed 1.3:1."

2 VSWR of 1.3 should be readily obtained over a 35 MHz bandwidth. This

¢r responds to a mismatch loss of less than 0.1 dB.
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2.1.8 Polarization Purity

é. “For any mode of operation, the cross-polarized component shall be at
least -30 4B with respect to the maximum principal polarization component as
measured over *he entire beam.”

Both Hughes and JPL/Ball Bros. have specified a -30 dB cross-polarization
level. While there is doubt as to whether or not this level can be maintained
in a space environment (with thermal and mechanical distortions induced on the
antenna surface), undistorted cross-polarization level should be as low as
possible on the test panels so that when the panels are artificially distorted,
an accurate measurement of the cross-polarization degradation can be made and

entered into the computer simulation model. It should also be pointed out

that a measurement of this level cross-polarized energy will be difficult.
2.1.9 Beam Pointing Accuracy

9. "The electrical beam maximum shall be within 0.3° of the mechanical bore-
sight axis, which shall be established with respect to vendor-specified datum
planes."

The 3-dB azimuth beamwidth (at C-band) for the full-size SIRA is 0.34°.
While it may not be necessary to maintain a 0.3° beam pointing accuracy for
the test panels (except to facilitate measurements), it certainly will be
necessary to maintain better than 0.3° accuracy for the full-size array. (At
an altitude of 200 km, an error of 0.3° corresponds to 1.05 km on the earth's
surface.) In addition, measuroments of beam position versus test panel dis-

tortion will be much easier and much more accurate with a beam aligned with

mechanical boresight.
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2.1.10 Side Lobe Level

10. "No side lobe shall exceed -12 dB (one-way) with respect to the electrical
beam maximum."™

To obtain three easily switched beam widths on the SIRA, uniform illumina-
tion of each module is required (as indicated by both JfL/BBRC and Hughes).
The theoretical side lobe level (SLL) for a uniformly illuminated aperture is
=13.2 dB. A reasonable SLL for an antenna the size of the test panels is on

the order of 0.7 to 1.0 dB worse.
2.1.11 Power Handling Requirements

11. "The antenna shall operate at rated power expected for SIR-B."

Up to this point in time, no demonstration of power handling capability
has been made by any potential vendor. While full power is desireable for the
test panels, it certainly is not necessary for the measurements that will be
made using them. However, some demonstration of power handling capability,
full power losses, etc. should be made before final SIRA contracts are awarded.

As an example, the peak power contemplated for SIR-A is approximately 1800 W.
2.1.12 Other Pattern Requirements (Note 4, Table I)

A maximum half-power beamwidth of 30° is necessary to minimize ground
scatter during far-field antenna measurements. Horizontal beam width is
determined from the 1.83 m (6') horizontal dimension and corresponds to 1.8°
at C-band and 1.2° at X~band. Vertical beam widths depend on the division of
vertical space between frequencies, polarizations, and modules. If horizontal

and vertical C-band elements can be shared, and if separate X-band elements
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are used, then a division of space as shown in Fiqure 2.1 will give minimum

vertical beamwidth, which is 1.06° with module B at either frequency.

2.2 Mechanical Specifications

2.2.1 Mechanical Dimensions

1. "Dimensions of the mechanical structure shall be less than 2.13 m by 2.13
m (7' x 7')."

Since the electrical structure is constrained to 6' x 6', a mechanical
structure of 7' x 7' should be sufficient. A larger structure wou.d pose

unnecessary problems in mounting/demounting.

2.2.2 Weight

2. "Total weight of the electrical/mechanical structure shall not exceed 90
kg."

The weight is constrained by the positioner weight/bending moment speci-

fications plus expected weight/size of the mechanical deformation simulator.

2.2.3 Support Structure

3. "Antenna should be mounted on a representative mechanical support, but
full rigidity necessary in a space environment is neither required nor expected.”

One of the goals of the deformation tests is to determine the rigidity
necessary to properly support the antenna under expected in situ mechanical/
thermal conditions. Hence, time and money expended in a back-up structure at

this point may be unnecessarily wasted. Furthermore, the antenna will be
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artificially deformed up to two cm from nominal flatness, and a too-rigid

structure will hinder these deformation tests.

2.2.4 Mechanical Deformation Testing

4. "Design should recognize that mechanical testing will induce up to two cm
convex and/or concave deflections over the area of the antenna. Maximum rate
of change in deflection shall be less than two cm/m."

Preliminary computer simulations show that five cm distortions on the
full-size antenna at C- or X-band degrade the antenna footprint to a point
where it is no longer usable in a synthetic aperture radar system. For ex-
ample, at X-band, a five cm parabolic bow (simulating uneven heating) degrades

antenna gain by as much as 10 dB, while a panel unfoldi..3 error of -lcm/2cm

gives a degradation of 3 dB.

For the smaller test panels, a two cm maximum bow should be sufficient to

demonstrate deformation effects on the antenna pattern.

2.2.5 Interface with PSL Deformation Simulator

5. "Rear of antenna shall be a flat metal plate, securely fastened to the
electrical antenna so that when deflections are induced, the antenna deflection
will replicate the plate deflection."

6. "Primary support shall be a bolt circle 0.152 m in diameter centered at
the center of mass of the electrical/mechanical structure."

7. "An array of stress pads, spaced 0.305 m over the rear of the antenna,
shall be attached to the rear plate. These should be drilled and tapped for
3/8" - 16 bolts to a depth of 1.27 cm (1/2")."

The weight-bearing point will be the 0.152 m (6") bolt circle centered at

the structure's center of mass. Deformation from flatness will be induced by



15

adjusting lead screw depth at each stress pad. The antenna deflection should

replicate this deformation.

2.2.6 Connectors

8. "Electrical connectors shall be located on the rear panel at convenient
locations not to interfere with the bolt circle or array of stress pads.
Connectors shall be Type N for the lower frequency, UG-39 waveguide interface
for the higher frequency."

2.2.7 Environmental and Stability of Materials

9. "Environmental -- The structure shall return to nominal flatness after
broadside exposure to wind speeds of up to 85 knots.

10. Stability of Materials -- Electrical chacteristics of materials used in
antenna elements and feed lines shall be stable over long periods of time
under space vacuum conditions."

2.2.8 Folding Mechanism

11. "Vendor shall propose technique for folding mechanism for the panels and
shall demonstrate that the full-sized array will perform with electrical
characteristics scaled from that of the test panel. Vendor is not expected
to deliver test panel with a folding mechanism but instead is required to
demonstrate proof of concept.”



3.0 COMPUTER SIMULATION OF MECHANICAL/THERMAIL DEFORMATIONS

Since the mathematical model of and the computer program for antenna
simulations were developed and tested during Phase I, it has been possible to
begin the simulation of various scenarios in Phase II. The purpose of the
Phase II simulations was to gain insight into the effect of surface flatness
errors on

1. Beam pointing error

2. Gain degradation

3. Main beam spreading and break-up

4. Side lobe level degradation
Simulations of two types of errors, namely panel unfolding errors and para-
bolic erxrrors created by thermal gradients through the antenna (as shown in
Figure 3.1), were performed at 1.5, 4.5, 9.0, 12.0, and 14.0 GHz. Footprint
contour maps of fifteen representative simulations are shown in section 4.0.
As would be expected, the effect of errors on antenna parameter degradation

were more severe at higher fregquencies.

In all cases an 1l1.6 m antenna azimuth length was used, as well as a 200
km altitude. Elevation length was fixed at 8 1/2 wavelengths to give a con-
stant elevation beam width of six degrees. It was unnecessary to vary the
elevation pattern for the simulations shown in Figure 3.1, since each simula-
tion affected only the azimuth pattern. Two off-nadir angles (10 and 50 de-
grees) were simulated to show the interaction of this parameter with flatness

errors and frequency.

lg



17

— i

(a) Panel unfolding error

(b) Parabolic bow simulating thermal distortion

Figure 3.1. Antenna deformation confiqurations used in the computer
model.
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3.1 Effects of Errors On Antenna Gain

Static gain errors will affect the system signal-to-noise ratio(SNR).
Furthermore, slow changes in the antenna gain over a period of hours or days

cause instability in the system calibration.

Figures 3.2, 3.3, 3.4, and 3.5 illustrate the degradation of beam
amtemma gain from panel unfolding errors and parabolic bow errors s both
frequency and severity of warp.* Since beam pointing errors occurred simul-
taneously, it was necessary to first search the footprint for maximum gain and
then use this gain fiqure. 1In addition, each gain was normalized to its base-
line, since the actual gain of the antenna changes at different frequencies.
Also, this is a convenient way to take all losses into account, since losses

should be constant with respect to panel deformation.

An unexpected result of the gain degradation simulation was the non-
monotonic behavior of the curves. There were two contributing factors: (1)
the panel degradations tended to focus the beam for certain warp errors and
unfocus the beam for other errors (a resonance phenomenum), and (2) the
gain search mentioned above did not find the true maximum gain because of dis-
cretization of the footprint pattern into a finite number of sample points.

To determine which of these two factors is primarily responsible for the curve

L ]
Refer to the legend sketches on the contour maps of Section 4 for an explan-
ation of the surface error convention used.
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Figure 3.2. Gain decradation (dB) versus frequency (GHz) for a panel
unfolding error of (-1.0, 2.0) cm at (a) 10 degree tilt
(b) 50 degree tilt.
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Figure 3.3. Gain degradation (dB) vzarsus frequency (GHz) for a five
cm parabolic bow at (a) 10 degree ti’ ‘b S0 degree tilt.
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Figure 3.4. Gain degradation (dB) versus warp severity at 1.5 HGz and

10" tilt for (a) panel unfolding errors, (b) parabolic bow
errors.
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Figure 3.5. Gain degradation (48) versus warp severity (cm) for
parabolic bow errors at . 10 tilt: (a) 1.5 GHz,
(b) 9.0 GHz.
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shape, it will be necessary in Phase III to perform additional simulations at

intermediate data points.

3.2 Beam Pointing Errors

In the process of forming the synthetic aperture, it is necessary to
sense any changes in the position of the antenna beam relative to the isodops
(surfaces of constant Doppler frequency) so that the resulting image may be
compensated. One way of doing this is to monitor in real time the average
Doppler shift of the radar data, and use this information to keep the beam
centeresd about the required isodop. A second approach would be to monitor the
data and dynamically adjust the processor to compensate for deviations in beam
position (as well as orbit eccentricity and angular velocity of the space-
craft). Using this approach, the antenna requirements are reduced (at the
expense cf increased processor complexity) to placing limits on the beam

pointing error.

Figures 3.6 and 3.7 depict the beam pointing error at 1.5 and 9.0 GHz for
panel unfolding errors. It was found that, for this error type, the beam
poirting error was independent of frequency. There is no beam pointing error

for the parabolic bow, since it is a symmetric error.

Figures 3.8 - 3.14 show the actual azimuth far-field patterns for diffe-

rent warp severities.
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(a)

3 -
1 1 1 ]
0 1 2 3 4
(b)

Figure 3.6. Beam pointing error (km) versus panel unfolding error
(cm) at £ = 1.5 GHz for (a) 10 tilt, (b) 50 tile.



(a)

(b)

Figure 3.7. Beam pointing error (km) gersus panel unfolding error (cm)
at f = 9.0 GHz for (a) 10° eilt, (b) 50° tilt.
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3.3 Main Beam Shape

The main beam shape modulates the amplitude of the data. 1If the beam
shape is known before launch, the processor can be designed o compensate for

it. If the beam shape changes during a mission, the data will be degraded.

Figures 3.15 and 3.16 summarize the effect of panel unfolding errors and
parabolic bow errors on main beam spreading. The most dramatic change is in
the beam area covered by the parabolic bow error. Figures 3.17, 3.18, 3.19,
and 3.20 depict the azimuth footprint pattern for parabolic bow errors of 1,

2, 3, and 4 cm respectively.

3.4 SiGe Lobe Level

The principal impact of the antenna side lobe level ' (T} the overall
system is one of ambiguities within the processed image. Any rise in “he side
lobe level will decreas: the imaged signal-to-ambiguity ratio. Furthermore,
an increase in the SLL indicates that the antenna gain has decreas::d, degrading

the SNR as well.

Another quality criterion is that of total peak to total side lobe puwer
ratio. Even though all side lobes may fall below some relative level (for
example, -20 dB), the integrated SLL power level may completely mask the

presence of a fairly strong point target.



34

3600 o

3400 |

3200 F
1 A - |

3000 4
0 1 2 3 4
(a)

S000 r
—— ) R —

4800

4600 }
4400 L L —
0 l 2 3

(b)

Figure 3.15. Azimuth beam width (meters) versus warp severity (cm)ofor
panel gnfolding errors at 1.5 GHz and 200 km: (a) 10 tilt,
(b) 50 tilt.
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Figures 3.21, 3.22, and 3.23 illustrate the effect of mechanical errors
on azimuth SLL. (Since all errors thus far simulated were in the azimuth

plane, the elevation SLL remained constant.)

3.5 Other Antenna Parameters

Two other antenra parameters will vary with mechanical/electrical devia-
tions from flatness: (1) polarization purity and (2) cross-band/cross-polari-
zation beam coincidence. These parameters, unlike the parameters discussed
previously, depend upon the apportionment of space between frequencies and

polarizations. These parameters will be investigated during Phase III.

3.6 Summary of Computer Predictions

From the simulations run thus far, it has been shown that minor errors in
important antenna parameters, especially at the higher (X-band and up) fre-
quencies will critically degrade antenna performance. Furthermore, the degra-
dation in antenna performance increases rapidly for fiatness errors greater
than 2 cm (3/4"). A recent BBRC report2 stated that deformations of up to
1/4" would have no measurable effect on antenna performance at L-band, but the
report contained no substantiating data or patterns. In addition, BBRC has
indicated in design review briefings that deflections of more than 1/4" are
highly unlikely, though no physical justification was given. This indeed may
be the case for the L-band SERGE antenna which has a strong-back monolithic

mechanical structure; however, while the SIR-B support structure design has

2 SERGE Antenna Concept Selection Review Report, NASA Contract NAS9-15363,
August 3, 1977.
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{a)

14 -

12 -

10

(b)

Figure 3.21, Side lobe level (dB) versug frequency (ng) for panel
unfolding errors at (a) 10  tilt, (b) 50 tilt.
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Figure 3.22. Azimuth profile plane side lobe level (dB) versus warp o
severity foropanel unfolding errors at 1.5 GHz: (a) 10
tilt, (b) 50 tilt.
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not yet been completed, it undoubtedly will be collapsible to fold and unfold

from the shuttle payload bay.

Since the SERGE antenna will fly first, it is recommended *hat (1) fur-
ther simulations of the SERGE antenna be performed to determine the maximum
mechanical distortion which will still give acceptable antenna and processor
cperation, (2) the full-size SERGE antenna pattern and/or individual SERGE
panel patterns be rigorously measured under possible mechanical deflections to
support the computer predictions and (3) the 1/4" maximum deflection prediction

be substantiated.



4.0 FOOTPRINT CONTOUR MAPS OF FIFTEEN SIMULATIONS

Fifte

en footprint maps from computer-generated data have been included

to show the effects of frequency and error type on SIR antenna performance.

The following data were used in all simulations:

Yaw = Oo

Tilt = 50°

Twist = 0°

Array Size: 1ll.6 mx 8 1/2 A

Illumination: Uniform

Subsatellite Point: 0° Lat., 0° Lone.

Contour Region: <-1/2 < Lat. <1/2, 0 < long. < 4 degrees

Computer Plot Resolution: 151 x 151 points

The following simulations are shown:

Figure Fx _iency (GHz) Error e

4.1 1.5 None

4.2 1.5 Panel Unfolding Error
4.3 1.5 Parabolic Bow Errxor
4.4 4.5 None

4.5 4.5 Panel Unfolding Error
4.6 4.5 Parabolic Bow Error
4.7 9.0 None

4.8 9.0 Panel Unfolding Error
4.9 9.0 Parabolic Bow Error
4.10 12.0 None

4.11 12.0 Panel Unfolding Error
4.12 12.0 Parabolic Bow Error
4.13 14.0 None

4.14 14.0 Panel Unfolding Error
4.15 14.0 Parabolic Bow Error

45
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